Calculus I
 Lecture 24

Feb 19-8:47 AM

Class QE 13
Given $x^{2}+x y+y^{2}=3$
Find $\left.\frac{d y}{d x}\right|_{(1,1)}$

$$
\frac{d}{d x}\left[x^{2}+x y+y^{2}\right]=\frac{d}{d x}[3]
$$

$$
\begin{array}{ll}
\text { Find }\left.\frac{d y}{d x}\right|_{(1,1)} & \frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}[x y]+\frac{d}{d x}\left[y^{2}\right]=0 \\
x^{2}+x y+y^{2}=3 & 2 x+1 \cdot y+x \cdot \frac{d y}{d x}+2 y d y \\
(1,1) \quad 1^{2}+1 \cdot 1+1^{2}=3 & 2 x
\end{array}
$$

$$
m=\left.\frac{d y}{d x}\right|_{(1, y)}=-1
$$

$$
x \frac{d y}{d x}+2 y \frac{d y}{d x}=-2 x-y
$$

$$
y-1=-1\left(x^{0}-1\right)
$$

$$
(x+2 y) \sqrt[d y]{d x}=-2 x-y
$$

$$
\begin{array}{rr}
y=-1=-1(x-1) & \frac{d y}{d x}=\frac{-2 x-y}{x+2 y} \\
y=-x+2 & \left.\frac{d y}{d x}\right|_{(1,1)}=\frac{-2 \cdot 1-1}{1+2 \cdot 1}=\frac{-3}{3} \\
=-1
\end{array}
$$

Given $y \cos x=x^{2}+y^{2}$
find $\frac{d y}{d x}$.

$$
\frac{d}{d x}\left[\begin{array}{c}
y \\
\text { Product } \\
\text { Rule }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Rule } \\
& \frac{d}{d x}[y] \cdot \cos x+y \cdot \frac{d}{d x}[\cos x]=\frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}\left[y^{2}\right] \\
& \frac{d y}{d x} \cdot \cos x-\underbrace{-y \cdot \sin x}_{\square}=2 x+2 y \cdot \frac{d y}{d x} \\
& \frac{d y}{d x} \cdot \cos x-2 y \cdot \frac{d y}{d x}=2 x+y \cdot \sin x \\
& (-2 y+\cos x) \frac{d y}{d x}=2 x+y \sin x \\
& \frac{d y}{d x}=\frac{2 x+y \sin x}{-2 y+\cos x}
\end{aligned}
$$

Given $x \sin y+y \sin x=1$
Find $\frac{d y}{d x}$

$$
1 \cdot \sin y+x \cdot \cos y \cdot \frac{d y}{d x}+\frac{d y}{d x} \cdot \sin x+y \cdot \cos x=0
$$

$$
\begin{aligned}
& \sin y+x \cos y \cdot \frac{d y}{d x}+\sin x \cdot \frac{d y}{d x}+y \cos x=0 \\
& (x \cos y+\sin x) \frac{d y}{d x}=-\sin y-y \cos x \\
& \frac{d y}{d x}=\frac{-\sin y-y \cos x}{x \cos y+\sin x}=-\frac{\sin y+y \cos x}{x \cos y+\sin x}
\end{aligned}
$$

Given $\operatorname{Sin}(x+y)=2 x-2 y$

1) Is (π, π) on the graph of the given eqn?

$$
\begin{aligned}
\operatorname{Sin}(\pi+\pi) & =2 \pi-2 \pi \\
\operatorname{Sin} 2 \pi & =0
\end{aligned} \quad \longrightarrow 0=0 \checkmark
$$

$$
\sin (x+y)=2 x-2 y
$$

$$
\cos (x+y) \cdot\left[1+\frac{d y}{d x}\right]=2-2 \cdot \frac{d y}{d x}
$$

Plug in (π, π)

$$
m=\left.\frac{d y}{d x}\right|_{(\pi, \pi)}
$$

$$
\cos 2 \pi \cdot[1+m]=2-2 m
$$

$$
1+m=2-2 m \quad 3 m=1 \quad m=\frac{1}{3}
$$

Find equ of the normal line at (π, π)

Mar 19-9:01 AM

Show $y=a x^{3}$ and $x^{2}+3 y^{2}=b$ are orthogonal curves at their intersection points.

$$
\not p a x^{2} \cdot \frac{-x}{x y}=\frac{-a x^{3}}{y}=\frac{-y}{y}=-1 \quad \frac{d y}{d x}=\frac{-2 x}{6 y}=\frac{-x}{3 y}
$$

Introductions to linear approximation Estimate $\sqrt{9.1} \approx \sqrt{9}=3$
$f(x)=\sqrt{x} \quad f(9)=3$

$f(9.1)=\sqrt{9.1}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

$$
\sqrt{x}-f(9) \approx f^{\prime}(9)(x-9)
$$

$$
f^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{6}
$$

$$
\sqrt{x} \approx f(9)+f^{\prime}(9)(x-9)
$$

Use call to

$$
\sqrt{x} \approx 3+\frac{1}{6}(x-9)
$$

Sind

$$
\sqrt{9.1} \approx 3+\frac{1}{6}(9.1-9)
$$

$$
\sqrt{9.1} \approx 3.017
$$

$$
=3+\frac{1}{6}(\cdot 1)=3+\frac{1}{60}
$$

$$
=\frac{181}{60} \approx 3.017
$$

Estimate $\tan 46^{\circ}$ to 3-decimal places.

$$
\tan 46^{\circ} \approx \tan 45^{\circ}=1
$$

use your calk to find $\tan 46^{\circ} \approx 1.036$ $f(x)=\tan x \quad$ Linear Appr. Near $x=a$
Near $a=45^{\circ}=\frac{\pi}{4}$ $f(x) \approx f(a)+f^{\prime}(a)(x-a)$

$$
\begin{array}{rlrl}
f(a)=\tan 45^{\circ}=1 & \tan x & \approx 1+2\left(x-\frac{\pi}{4}\right) \\
f^{\prime}(x)=\sec ^{2} x & \tan 46^{\circ} \approx 1+2\left(46^{\circ}-45^{\circ}\right) \\
\begin{array}{rlr}
f^{\prime}(a)=\sec ^{2} 45^{\circ}= & \frac{1}{\cos ^{2} 45^{\circ}} & \\
& =\frac{1}{\left(\frac{\sqrt{2}}{2}\right)^{2}} & \\
& =1+2 \cdot \frac{\pi}{180}=1+\frac{\pi}{90} \\
& =\frac{1}{\frac{2}{4}}=\frac{1}{\frac{1}{2}}=2 & \\
& & =\frac{90+\pi}{90} \\
& & \approx 1.035
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Estimate } \frac{1}{4.002} \text { using linear approximation. } \\
& \begin{array}{c}
\frac{1}{4.002} \approx \frac{1}{4} \approx .25 \\
a
\end{array} \\
& f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
& f(x)=\frac{1}{x} \quad \frac{1}{x} \approx \frac{1}{4}+\frac{-1}{16}(x-4) \\
& a=4 \quad \text { at } 4.002 \\
& \begin{array}{ll}
f(a)=\frac{1}{4}=.25 & \frac{1}{4.002} \approx \frac{1}{4}-\frac{1}{16}(4.002-4) \\
f^{\prime}(x)=\frac{-1}{x} &
\end{array} \\
& \begin{aligned}
f^{\prime}(x)=\frac{-1}{x^{2}} & \frac{1}{4.002}
\end{aligned} \\
& f^{\prime}(a)=\frac{-1}{4^{2}}=\frac{-1}{16} \\
& =\frac{1}{4}-\frac{1}{\frac{16}{8}} \cdot \frac{2}{1000} \\
& \text { use your call to } \\
& =\frac{1}{4}-\frac{1}{8000} \\
& \text { Find } \frac{1}{4.002} \quad=\frac{1 \cdot 2000}{4 \cdot 2000}-\frac{1}{8000} \\
& =.2498750625 \ldots \\
& =\frac{2000}{8000}-\frac{1}{8000} \\
& =\frac{1999}{8000} \approx .249875
\end{aligned}
$$

